
By Sandro Gauci, EnableSecurity

Date:17 June 2008

ENABLESECURITY T +44 08458677214 sandro@enablesecurity.com http://enablesecurity.com/

 The Extended HTML Form attack revisited

mailto:sandro@enablesecurity.com
mailto:sandro@enablesecurity.com
http://enablesecurity.com
http://enablesecurity.com

A brief history
In early 2002 I had issued a paper and an advisory detailing an innovative way of performing Cross Site Scripting attacks by

making use of various protocols which are not based on HTTP (Hyper Text Transfer Protocol). The paper was titled

“Extended HTML Form Attack” and was released under my pseudonym “Obscure” on EyeonSecurity.org. At the time both

Internet Explorer and Opera were found to be vulnerable and I had worked with the vendors concerned so that they could fix

these issues in a timely fashion. EyeonSecurity hosted some sample code as did other 3rd party security sites to

demonstrate this problem.

Summary of the attack
The original paper can still be downloaded from EyeonSecurity1 and contains more information about the attack. The

following is a short description of the attack and how it works.

HTML forms (i.e. <form>) are one of the features in HTTP that allows users to send data to HTTP servers. An often

overlooked feature is that due to the nature of HTTP, the web browser has no way of identifying between an HTTP server

and one that is not an HTTP server. Therefore web browsers may send this data to any open port, regardless of whether the

open port belongs to an HTTP server or not. Apart from that, many web browsers will simply render any data that is returned

from the server. One thing to keep in mind is that HTML forms can be hosted on one website (attacker’s website) and send

data to an open port on a victim server.

When an attacker can control what is returned by the server, the victim becomes vulnerable to security issues such as Cross

Site Scripting. In the case of HTTP servers, this is a well known issue and therefore modern web servers do not exhibit this

behavior by default. However this is not the case with other kinds of servers such as SMTP (Simple Mail Transfer Protocol) or

FTP (File Transfer Protocol) servers, often these servers will echo back error messages containing user input. When this user

input can be controlled by the attacker, bad things can happen.

The following is a hypothetical attack scenario:

1. Victim browses to a malicious site while logged in to an Auction Site

2. The victim’s web browser sends a POST request as instructed by the malicious site to the auction site’s IMAP (Internet

Message Access Protocol) server. The POST request contains malicious Javascript code.

3. The IMAP server returns errors containing the malicious Javascript code

4. The Javascript code is rendered on the victim’s browser and runs under the Auction Site’s security context. The reason

why this code runs within the Auction Site’s security context is that it conforms to the same origin policy.

5. The attacker obtains the session cookie and can now login as the victim.

So how would an attacker go about exploiting this vulnerability? Requirements:

• A service running on a blocked port not blocked by the web browser

• Victim making use of a vulnerable web browser (non-Mozilla web browser at the time of this writing).

• The service needs to have the following properties

1. A forward DNS record belonging to the target’s domain. Eg. If the attacker wants to steal example.org’s cookie, then

mail.example.org would be a good target

2. The service needs to echo back content supplied by the victim’s web browser

The Extended HTML Form attack revisited 1

1 http://eyeonsecurity.org/papers/extendedformattack.html

http://eyeonsecurity.org/papers/extendedformattack.html
http://eyeonsecurity.org/papers/extendedformattack.html

Example
An attacker prepares an HTML page with the content as seen in Figure 1.

Let’s go step by step of how the attack could work in practice.

• A victim making use of Microsoft Internet Explorer points his browser to a malicious website attacker.com. Attacker.com

contains the prepared HTML page.

• The victim’s web browser renders the HTML page and executes Javascript code which posts the form automatically.

• The web browser sends an HTTP POST request to the IMAPS server on port 993

• The IMAPS server does not like what it gets, since the HTTP request does not contain valid IMAP commands. It replies

with error messages containing data supplied by the HTTP request. This is illustrated by Figure 2.

• The victim web browser receives the error messages from the IMAPS server and tries to render them as HTML (Figure 3).

<form method="POST"
enctype="multipart/form-data" action="https://victim-imaps-server:993/" name="demo">
<textarea name="cmd" rows="4" cols="70">
<script>evil script</script>
a002 logout
</textarea>

<input type="submit" value="DoIT!">
</form>
<script>document.demo.submit()</script>

Figure 1

POST / HTTP/1.1
Host: victim-imaps-server:993
Content-Type: multipart/form-data; boundary=----------NnEwpnt99sDGh2y6HfQ2g9

------------NnEwpnt99sDGh2y6HfQ2g9
Content-Disposition: form-data; name="cmd"

<script>evil script</script>
a002 logout

------------NnEwpnt99sDGh2y6HfQ2g9--
* OK IMAP4rev1 server ready (3.5.27)
POST BAD Unknown command
Host: BAD Unknown command
Content-Type: BAD Unknown command
...
<script>evil script</script> BAD Unknown command
* BYE IMAP4rev1 Server logging out
a002 OK LOGOUT completed

Figure 2

The Extended HTML Form attack revisited 2

Does it still work?
The short answer is yes. Most popular web browsers seem to block certain well known ports. However, there are many

cases where an attacker can make use of ports which are not on the blacklist. Internet Explorer and Opera do not block as

many ports are Safari or Firefox (Mozilla). During my testing I found that ports such as 993 (standard port for port Secure

IMAP) are not blocked on these web browsers. Therefore an attacker can make use of IMAPS servers by redirecting the

victim to an HTTPS URL. For example: https://imap.victimservice.org:993/. The screenshot at figure 3 shows a proof of

concept example.

 Figure 3

The below table shows how different browsers exhibit different behavior when they connect to a non-HTTP Server. During

my testing, Mozilla was the only browser not rendering the content as HTML and therefore it appears to be immune to the

attack. Opera 9.50 also showed some inconsistent results, sometimes rendering the HTML content returned from an IMAPS

server, other times showing the content as plain text.

Web Browser / Version Restricts Ports Renders HTML from non-HTTP Servers

Mozilla-based browsers (Firefox etc) Well known ports No

Opera 9.27 / 9.50 Some ports Yes (but not consistent)

Internet Explorer 6 / 7 / 8 on XP / Vista Some ports Yes

Safari 1.3.2 / 3.1.1 on OS X / Windows Well known ports Yes

The Extended HTML Form attack revisited 3

https://imap.victimservice.org:993
https://imap.victimservice.org:993

Suggestions to the Web browser vendors
The primary reason why various web browsers are vulnerable to this attack is that they do their best to render any response

as HTML. Therefore, to solve this security flaw web browsers have to change this behavior. One solution would be to check

the HTTP response headers and make sure that they are indeed HTTP/1.0 or 1.1 compliant. This would identify IMAP or

FTP servers responding with malicious HTML. When the HTTP response headers are not found, the web browser should not

render the content as HTML.

About EnableSecurity
EnableSecurity is dedicated to providing high quality Information Security Consultancy, Research and Development.

EnableSecurity is focused on analysis of security challenges and providing solutions to such threats. EnableSecurity works

on developing custom targeted security solutions, as well as working with existing off the shelf security tools to provide the

best results for their customers. More information about EnableSecurity can be found at enablesecurity.com.

Disclaimer
The information within this document may change without notice. Use of this information constitutes acceptance for use in

an AS IS condition. There are NO warranties with regard to this information. In no event shall the author be liable for any

consequences whatsoever arising out of or in connection with the use or spread of this information. Any use of this

information lies within the realm of the user's responsibility.

Redistribution
Copyright © 2008 ENABLESECURITY.

Redistribution of this document is permitted and encouraged as long as the contents are not changed and this copyright

notice is included.

The Extended HTML Form attack revisited 4

http://enablesecurity.com
http://enablesecurity.com

